. 证明 只需对任意.证明不等式成立即可. 记.则 . .. . 把上面这n个等式相加.并利用可得 . 由Cauchy 不等式可得 . 所以 . 查看更多

 

题目列表(包括答案和解析)

课本“为了证明,只需证明”所依据的理论是:不等式的性质定理

[  ]

A.3     B.3的推论

C.4     D.5

查看答案和解析>>

课本“为了证明,只需证明”所依据的理论是:不等式的性质定理

[  ]

A.3
B.3的推论
C.4
D.5

查看答案和解析>>

已知函数f(x)=2x,g(x)=-x2+2x+b(b∈R),记h(x)=f(x)-
1f(x)

(Ⅰ)判断h(x)的奇偶性,并证明;
(Ⅱ)对任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2).若f(x1)=g(x2),求实数b的值;
(Ⅲ)若2xh(2x)+mh(x)≥0对于一切x∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

如图,已知三棱锥P-ABC中,PA⊥PC,D为AB中点,M为PB的中点,且AB=2PD.
(I)求证:DM∥面PAC;
(II)找出三棱锥P-ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可)

查看答案和解析>>

我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:
.(填“是”或“否”)如果是,写出它的一个“和谐数”:
2
2

(2)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,
3
2
是其“和谐数”.
证明过程如下:对任意x1∈[10,100],令
g(x1)+g(x2)
2
=
3
2
,即
lgx1+lgx2
2
=
3
2

x2=
1000
x1
.∵x1∈[10,100],∴x2=
1000
x1
∈[10,100]
.即对任意x1∈[10,100],存在唯一的x2=
1000
x1
∈[10,100]
,使得
g(x)+g(x2)
2
=
3
2
.∴g(x)=lgx为“和谐函数”,
3
2
是其“和谐数”.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”;
(3)写出一个不是“和谐函数”的函数,并作出证明.

查看答案和解析>>


同步练习册答案