9.已知函数y=上是增函数.函数(x+2)是偶函数.则正确的是( ) A.(1)<< B.<(1)< C.<<(1) D.<(1)< 查看更多

 

题目列表(包括答案和解析)

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数,
(1)如果函数y=x+
3m
x
(x>0)
的值域是[6,+∞),求实数m的值;
(2)研究函数f(x)=x2+
a
x2
(常数a>0)在定义域内的单调性,并说明理由;
(3)若把函数f(x)=x2+
a
x2
(常数a>0)在[1,2]上的最小值记为g(a),求g(a)的表达式.

查看答案和解析>>

已知函数y=x+
t
x
有如下性质:如果常数t>0,那么该函数(0,
t
]上是减函数,在[
t
,+∞)上是增函数.
(1)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(2)对于(1)中的函数f(x)和函数g(x),若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

已知函数y=x+数学公式(x>0)有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+数学公式和y=x2+数学公式(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=数学公式+数学公式在区间[数学公式,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

已知函数y=x+数学公式有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+数学公式和y=x2+数学公式(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明).

查看答案和解析>>

已知函数y=x+数学公式有如下性质:如果常数a>0,那么该函数在(0,数学公式]上是减函数,在[数学公式,+∞)上是增函数.
(1)如果函数y=x+数学公式(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+数学公式(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+数学公式和y=x2+数学公式(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=数学公式+数学公式(n是正整数)在区间[数学公式,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>


同步练习册答案