已知为正实数.奇函数与直线有两个交点.则方程 的实数根的个数是( ) 3个 (D)4个 查看更多

 

题目列表(包括答案和解析)

如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

己知在锐角ΔABC中,角所对的边分别为,且

(I )求角大小;

(II)当时,求的取值范围.

20.如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面

(2)设二面角的平面角为,若,求线段长的取值范围。

 


21.已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;

(2)求三角形MNT的面积的最大值

22. 已知函数

(Ⅰ)若上存在最大值与最小值,且其最大值与最小值的和为,试求的值。

(Ⅱ)若为奇函数:

(1)是否存在实数,使得为增函数,为减函数,若存在,求出的值,若不存在,请说明理由;

(2)如果当时,都有恒成立,试求的取值范围.

查看答案和解析>>

下图展示了一个由区间(其中为一正实数)到实数集R上的映射过程:区间中的实数对应线段上的点,如图1;将线段围成一个离心率为的椭圆,使两端点恰好重合于椭圆的一个短轴端点,如图2 ;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在轴上,已知此时点的坐标为,如图3,在图形变化过程中,图1中线段的长度对应于图3中的椭圆弧ADM的长度.图3中直线与直线交于点,则与实数对应的实数就是,记作,

现给出下列5个命题

;   ②函数是奇函数;③函数上单调递增;   ④.函数的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

查看答案和解析>>

下图展示了一个由区间(其中为一正实数)到实数集R上的映射过程:区间中的实数对应线段上的点,如图1;将线段围成一个离心率为的椭圆,使两端点恰好重合于椭圆的一个短轴端点,如图2 ;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在轴上,已知此时点的坐标为,如图3,在图形变化过程中,图1中线段的长度对应于图3中的椭圆弧ADM的长度.图3中直线与直线交于点,则与实数对应的实数就是,记作,

现给出下列5个命题
;   ②函数是奇函数;③函数上单调递增;   ④.函数的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是:   (  )

A.①③⑤B.②③④C.②③⑤D.③④⑤

查看答案和解析>>


同步练习册答案