79.作出二面角的平面角主要方法是什么?(定义法.三垂线法.垂面法)三垂线法:一定平面.二作垂线.三作斜线.射影可见. 查看更多

 

题目列表(包括答案和解析)

已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.

(1)求证:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.

【解析】(1)证:DE//BF即可;

(2)可以利用向量法根据二面角P-BF-C的余弦值为,确定高PD的值,即可求出四棱锥的体积.也可利用传统方法直接作出二面角的平面角,求高PD的值也可.在找平面角时,要考虑运用三垂线或逆定理.

 

查看答案和解析>>

.下列四个命题
① 分别和两条异面直线均相交的两条直线一定是异面直线.  
② 一个平面内任意一点到另一个平面之距离均相等,那么这两个平面平行.
③ 一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的平
面角相等或互补.   
④ 过两异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中正确命
题的个数是 
A.1B.2C.3D.4

查看答案和解析>>

精英家教网已知四边形ABCD为菱形,AB=6,∠BAD=60°,两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,如图,E、M、N分别在AD、
AB、AP上,且AM=AE=2,AN=
13
AP,MN⊥PE

(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求平面BPS与底面ABCD所成锐二面角的平面角的正切
值;
(Ⅲ)求多面体SPABC的体积.

查看答案和解析>>

4、写出二面角的平面角的定义.

查看答案和解析>>

(2013•牡丹江一模)如图,在四棱锥P-ABCD中,AB丄平面PAD,PD=AD,E为PB的中点,向量
DF
=
1
2
AB
,点H在AD上,且
PH
AD
=0

(I)EF∥平面PAD.
(II)若PH=
3
,AD=2,AB=2,CD=2AB,
(1)求直线AF与平面PAB所成角的正弦值.
(2)求平面PAD与平面PBC所成二面角的平面角的余弦值.

查看答案和解析>>


同步练习册答案