95.函数y=f(x)在x=x0处连续.对y=f(x)有什么要求? 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+1成立,且当x>0时,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判断f(x)在R上的单调性,并证明;
(3)若对于任意给定的正实数ε,总能找到一个正实数σ,使得当|x-x0|<σ时,|f(x)-f(x0)|<ε,则称函数f(x)在x=x0处连续.试证明:f(x)在x=0处连续.

查看答案和解析>>

已知函数f(x)=lnx-ax.
(Ⅰ)求函数f(x)的极值,
(Ⅱ)已知过点P(1,f(1)),Q(e,f(e))的直线为l,则必存在x0∈(1,e),使曲线y=f(x)在点(x0,f(x0))处的切线与直线l平行,求x0的值,
(Ⅲ)已知函数g(x)图象在[0,1]上连续不断,且函数g(x)的导函数g'(x)在区间(0,1)内单调递减,若g(1)=0,试用上述结论证明:对于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>

已知函数f(x)=lnx-ax.
(Ⅰ)求函数f(x)的极值,
(Ⅱ)已知过点P(1,f(1)),Q(e,f(e))的直线为l,则必存在x0∈(1,e),使曲线y=f(x)在点(x0,f(x0))处的切线与直线l平行,求x0的值,
(Ⅲ)已知函数g(x)图象在[0,1]上连续不断,且函数g(x)的导函数g'(x)在区间(0,1)内单调递减,若g(1)=0,试用上述结论证明:对于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>

已知函数f(x)=lnx-ax.
(Ⅰ)求函数f(x)的极值,
(Ⅱ)已知过点P(1,f(1)),Q(e,f(e))的直线为l,则必存在x0∈(1,e),使曲线y=f(x)在点(x0,f(x0))处的切线与直线l平行,求x0的值,
(Ⅲ)已知函数g(x)图象在[0,1]上连续不断,且函数g(x)的导函数g'(x)在区间(0,1)内单调递减,若g(1)=0,试用上述结论证明:对于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>


同步练习册答案