97.=0是可导函数y=f(x)在x=x0处有极值的必要条件.对吗? 查看更多

 

题目列表(包括答案和解析)

(x0)0是可导函数yf(x)在点xx0处有极值的

[  ]
A.

充分不必要条件

B.

必要不充分条件

C.

充要条件

D.

非充分非必要条件

查看答案和解析>>

若Δx→0时, (也称函数的平均变化率)有极限,就说函数y=f(x)在x0处可导,并把这个极限叫做f(x)在点x0处的导数,记作:f′(x0)或y′|x=x0?,即f′(x0)=y′|x=x0 =___________;?

一般地,曲线y=f(x)在x=x0处的切线的___________就是y=f(x)在(x0,f(x0))处的导数.瞬时速度就是位移函数s(t)对__________的导数.

查看答案和解析>>

下列命题中:
①函数f(x)=x+
2
x
(x∈(0,1))
的最小值是2
2

②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);
③如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件;
④已知存在实数x使得不等式|x+1|-|x-1|≤a成立,则实数a的取值范围是a≥2.
其中正确的命题是
②③
②③

查看答案和解析>>

下列命题中:
①函数f(x)=x+
2
x
(x∈(0,1))
的最小值是2
2

②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);
③如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件;
④已知存在实数x使得不等式|x+1|-|x-1|≤a成立,则实数a的取值范围是a≥2.
其中正确的命题是______.

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>


同步练习册答案