102.解答开放型问题时.需要思维广阔全面.知识纵横联系.如探索性问题先假设存在相应结果.再以此寻找问题成立的充分条件是否存在.对综合分析能力.逻辑思维能力运算能力等要求较高. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)
为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,yt的函数关系式为a为常数).函数图象如图所示.
根据图中提供的信息,解答下列问题:
(1)求从药物释放开始每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;

(第17题图)

 
(2)按规定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少时间,学生才能回到教室?

 

查看答案和解析>>

(2006•静安区二模)某种洗衣机在洗涤衣服时,需经过进水、清洗、排水、脱水四个连续的过程.假设进水时水量匀速增加,清洗时水量保持不变.已知进水时间为4分钟,清洗时间为12分钟,排水时间为2分钟,脱水时间为2分钟.洗衣机中的水量y(升)与时间x(分钟)之间的关系如下表所示:
x 0 2 4 16 16.5 17 18
y 0 20 40 40 29.5 20 2
请根据表中提供的信息解答下列问题:
(1)试写出当x∈[0,16]时y关于x的函数解析式,并画出该函数的图象;
(2)根据排水阶段的2分钟点(x,y)的分布情况,可选用y=
a
x
+b
或y=c(x-20)2+d(其中a、b、c、d为常数),作为在排水阶段的2分钟内水量y与时间x之间关系的模拟函数.试分别求出这两个函数的解析式;
(3)请问(2)中求出的两个函数哪一个更接近实际情况?(写出必要的步骤)

查看答案和解析>>

某商店七月份营销一种饮料的销售利润y(万元)与销售量x(万瓶)之间函数关系的图象如图1中折线所示,该商店截止到13日调价时的销售利润为4万元,截止至15日进货时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及商店七月份该饮料的所有销售记录提供的信息(图2),解答下列问题:
(1)求销售量x为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每瓶饮料所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)

查看答案和解析>>

24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

(2012•福州模拟)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足
AQ
QP
 (λ>0),试探究:直线OQ与平面PBD所成角的大小是否一定大于
π
4
?并说明理由.

查看答案和解析>>


同步练习册答案