(2005全国卷Ⅰ理第21题.文第22题) 已知椭圆的中心为坐标原点O.焦点在轴上.斜率为1且过椭圆右焦点F的直线交椭圆于A.B两点.与共线. (1)求椭圆的离心率, (2)设M为椭圆上任意一点.且.证明为定值. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

  已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:

    ⑴ 求椭圆的标准方程;

⑵ 设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

 

 

查看答案和解析>>

已知椭圆的中心在原点,离心率e=
1
3
,且它的一个焦点与抛物线y2=8x的焦点重合,则此椭圆方程为(  )

查看答案和解析>>

已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
OA
+
OB
a
=(3,-1)
共线,则该椭圆的离心率为(  )
A、
5
3
B、
3
2
C、
6
3
D、
2
2
3

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在x轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P为该椭圆上的动点,C、D的坐标分别是(-
2
,0),(
2
,0),则PC•PD的最大值为(  )
A、4
B、2
2
C、3
D、2
2
+2

查看答案和解析>>

已知椭圆的中心在坐标原点,焦点在x轴上,过右焦点F作斜率为1的直线交椭圆于A、B两点,若椭圆上存在一点C,使
OA
+
OB
=
OC
,则椭圆的离心率是(  )

查看答案和解析>>


同步练习册答案