(2005天津卷理第21题.文第22题.满分14分) 抛物线C的方程为.过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点.且满足. (Ⅰ)求抛物线C的焦点坐标和准线方程, (Ⅱ)设直线AB上一点M.满足.证明线段PM的中点在y轴上, (Ⅲ)当=1时.若点P的坐标为.求∠PAB为钝角时点A的纵坐标的取值范围. 查看更多

 

题目列表(包括答案和解析)

抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.

(Ⅰ)求抛物线C的焦点坐标和准线方程;

(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;

(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

(05年天津卷)(14分)

抛物线C的方程为,过抛物线C上一点  ()作斜率为的两条直线分别交抛物线C于两点(P、A、B三点互不相同),且满足≠0且)。

(Ⅰ)求抛物线C的焦点坐标和准线方程

(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上

(Ⅲ)当时,若点P的坐标为(1,1),求∠PAB为钝角时点A的纵坐标的取值范围。

 

查看答案和解析>>

21.抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P,A,B三点互不相同),且满足.

(Ⅰ)求抛物线C的焦点坐标和准线方程;

(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;

(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.

查看答案和解析>>

已知抛物线C的方程为,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是

[  ]

A.(-∞,-1)∪(1,+∞)

B.

C.

D.

查看答案和解析>>

已知抛物线C的方程为,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是
[     ]
A.(-∞,-1)∪(1,+∞)
B.
C.
D.

查看答案和解析>>


同步练习册答案