已知双曲线C:,F1.F2分别是它的左右焦点,抛物线l的焦点与C的右焦点重合,l的准线与C的左准线重合,P是C和l的一个交点. 求证:=1.翰林汇 查看更多

 

题目列表(包括答案和解析)

已知双曲线C: ,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N (异于原点O),若|MN|=,则双曲线C的离心率 是(  )

A.     B.    C. 2  D.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1 (a>0,b>0)
的两个焦点为F1(-2,0),F2(2,0),点(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)已知Q(0,2),P为双曲线C上的动点,点M满足
QM
=
MP
,求动点M的轨迹方程;
(3)过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,记O为坐标原点,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点分别为F1(-2,0),F2(2,0),焦点到渐近线的距离为
2

(1)求双曲线C的方程;
(2)记O为坐标原点,过点M(0,2)的直线l交双曲线C于E、F两点,若△EOF的面积为2
2
,求直线l的方程.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1
满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为
5
3
,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,符合添加的条件可以是(  )
①双曲线C:
x2
a2
-
y2
b2
=1
上的任意点P都满足||PF1|-|PF2||=6;
②双曲线C:
x2
a2
-
y2
b2
=1
的渐近线方程为4x±3y=0;
③双曲线C:
x2
a2
-
y2
b2
=1
的焦距为10;
④双曲线C:
x2
a2
-
y2
b2
=1
的焦点到渐近线的距离为4.
A、①③B、②③C、①④D、①②④

查看答案和解析>>

(07年崇文区一模理)(13分)  已知双曲线C的中心为坐标原点O,焦点F1、F­2x轴上,点P在双曲线的左支上,点

M在右准线上,且满足

       (Ⅰ)求双曲线C的离心率e

       (Ⅱ)若双曲线C过点Q(2,),B1、B2是双曲线虚轴的上、下端点,点A、B是双曲线上不同的两点,且,求直线AB的方程.

 

查看答案和解析>>


同步练习册答案