18. 椭圆的短轴长为2.中心为原点O.对应于焦点F的准线l与x轴相 交于点A.|OA|=3|FA|.过A的直线与椭圆交于P.Q两点. (I)求椭圆的方程及离心率, (II)若直线PQ的斜率为.求△FPQ的面积. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

   如图,已知椭圆的左、右焦点分别为短轴两的端点为AB,且四边形是边长为2的正方形.

   (Ⅰ)求椭圆的方程;

(Ⅱ)若CD分别是椭圆长轴的左、右端点,动点M满足MD连结交椭圆于点证明:为定值;

(Ⅲ)在(Ⅱ)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

(本小题满分14分)设上的两点,已知向量,若且椭圆的离心率短轴长为2,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点(0,c),(c为半焦距),求直线的斜率的值;
(Ⅲ)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线轴上的截距为,设直线交椭圆于两个不同点

(1)求椭圆方程;

(2)求证:对任意的的允许值,的内心在定直线

 

查看答案和解析>>

(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)

(Ⅰ)求椭圆的方程;

(Ⅱ)直线平行于,且与椭圆交于AB两个不同点.

(ⅰ)若为钝角,求直线轴上的截距m的取值范围;

(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

 

查看答案和解析>>

(本小题满分14分)(理科)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,交直线于点,且,,

求证:为定值,并计算出该定值.

 

查看答案和解析>>


同步练习册答案