点P1.P2.-.Pn是线段AB的n个n+1等分点.P∈{P1.P2.-.Pn}.则P分有向线段的比λ的最大值和最小值分别是 A.n+1. B.n+1. C.n. D.n-1. 解析:由=λ知λ取得最大值时P为距点B最近的点Pn.取最小值时为P1. 答案:C 查看更多

 

题目列表(包括答案和解析)

P1,P2,…,Pn是线段AB上的n个等分点,则以这n+2个点为端点,可以得到互不相等的向量的个数为________个.

查看答案和解析>>

设P1,P2,…,Pn为平面α内的n个点,在平面α内的所有点中,若点P到P1,P2,…,Pn点的距离之和最小,则称点P为P1,P2,…,Pn点的一个“中位点”.例如,线段AB上的任意点都是端点A,B的中位点.则有下列命题:

①若A,B,C三个点共线,C在线AB上,则C是A,B,C的中位点;

②直角三角形斜边的点是该直角三角形三个顶点的中位点;

③若四个点A,B,C,D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.

其中的真命题是________.(写出所有真命题的序号数学社区)

查看答案和解析>>

(2007•深圳一模)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

(5分)设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:

①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;

②直角三角形斜边的中点是该直角三角形三个顶点的中位点;

③若四个点A、B、C、D共线,则它们的中位点存在且唯一;

④梯形对角线的交点是该梯形四个顶点的唯一中位点.

其中的真命题是    (写出所有真命题的序号).

 

查看答案和解析>>

设P1,P2,…Pn为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…Pn的距离之和最小,则称点P为P1,P2,…Pn的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:
①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;
②直角三角形斜边的中点是该直角三角形三个顶点的中位点;
③若四个点A、B、C、D共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是______(写出所有真命题的序号).

查看答案和解析>>


同步练习册答案