.消去参数得.6. B集合B与D都是曲线: 7. 将原方程配方.得 令即时, 当. 8.B 令.代入 得. 9.D 10.A 11.C 12.D 查看更多

 

题目列表(包括答案和解析)

过抛物线的对称轴上的定点,作直线与抛物线相交于两点.

(I)试证明两点的纵坐标之积为定值;

(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.

【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得 

 (2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之

设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=

  

KAN+KBN=+

本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

 

查看答案和解析>>

双曲线高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。的一条渐近线为高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,由方程组高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,消去y,得高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。有唯一解,所以△=高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,

所以高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,故选D. w.w.w.k.s.5.u.c.o.m    

答案:D.

【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.

查看答案和解析>>

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

精英家教网已知函数y=f(x)在定义域[-4,6]图象如图,记y=f(x)y=f′(x),则不等式f′(x)≥0的解集为(  )
A、[-
4
3
,1]∪[
11
3
,6]
B、[-3,0]∪[
7
3
,5]
C、[-4,-
4
3
]∪[1,
11
3
]
D、[-4,3]∪[0,1]∪[5,6]

查看答案和解析>>

下面结论错误 的序号是
①②③
①②③

①比较2n与2(n+1),n∈N*的大小时,根据n=1,2,3时,2<4,4<6,8=8,可得2n≤2(n+1)对一切n∈N*成立;
②由“(a•b)c=a(b•c)”(a,b,c∈R)类比可得“(
a
b
)•
c
=
a
•(
b
c
)
”;
③复数z满足z•
.
z
=1
,则|z-2+i|的最小值为
5

查看答案和解析>>


同步练习册答案