19.已知函数处取得极值.曲线过原点O(0.0)和点 P.若曲线在点P处的切线l与直线的夹角为45°.且l的倾斜角为钝角. (Ⅰ)求的解析式, (Ⅱ)若在区间[2m-1.m+1]上是增函数.求m的取值范围. 解:(I)∵曲线过原点.所以d=0, ∵过点P的切线l的斜率为 (a,b,c,d每求对一个得2分.共8分) (II) ----------14分 查看更多

 

题目列表(包括答案和解析)

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

已知函数处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 
(1)求的解析式;
(2)若在区间上是增函数,数的取值范围;
(3)若对任意,不等式恒成立,求的最小值.

查看答案和解析>>

已知函数处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 

(1)求的解析式;

(2)若在区间上是增函数,数的取值范围;

(3)若对任意,不等式恒成立,求的最小值.

 

查看答案和解析>>

已知函数处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 

(1)求的解析式;

(2)若在区间上是增函数,数的取值范围;

(3)若对任意,不等式恒成立,求的最小值.

查看答案和解析>>

已知函数处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 
(1)求的解析式;
(2)若在区间上是增函数,数的取值范围;
(3)若对任意,不等式恒成立,求的最小值.

查看答案和解析>>


同步练习册答案