1.求最小正整数.使得为纯虚数.并求出. 查看更多

 

题目列表(包括答案和解析)

 如图点是曲线)上的点,点轴上的点,△是以为直角顶点的等腰三角形,其中,2,3,……,为坐标原点。

(I)求数列的通项公式;

(II)求数列,求最小正整数,使得对任意的,当时,成立。

 

 

 

 

 

 

 

查看答案和解析>>

精英家教网如图点An(xn,yn)是曲线y2=2x(y≥0)上的点,点Bn(an,0)是x轴上的点,△Bn-1AnBn是以An(xn,yn)为直角顶点的等腰三角形,其中n=1,2,3,…,B0为坐标原点.
(I)求数列{an}的通项公式;
(II)求数列bn=2n-1,求最小正整数m,使得对任意的n∈N*,当n>m时,an<bn成立.

查看答案和解析>>

(2013•乐山二模)已知f(x)=-
4+
1
x2
,点Pn(an,-
1
an+1
)
在曲线y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求证:数列{
1
a
2
n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{
a
2
n
a
2
n+1
}
的前n项和为Sn,若对于任意的n∈N*,存在正整数t,使得Snt2-t-
1
2
恒成立,求最小正整数t的值.

查看答案和解析>>

(2011•东城区模拟)对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定 {△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
c1
a1
+
c2
a2
+
c3
a3
+…+
cn
an
,若Tn<m成立,求最小正整数m的值.

查看答案和解析>>

(本小题满分16分)已知函数的图象在上连续不断,定义:

其中,表示函数在区间上的最小值,表示函数在区间上的最大值.若存在最小正整数,使得对任意的成立,则称函数为区间上的“阶收缩函数”.

(1)若,试写出的表达式;

(2)已知函数试判断是否为上的“阶收缩函数”,如果是,求出相应的;如果不是,请说明理由;

(3)已知函数上的2阶收缩函数,求的取值范围.

 

查看答案和解析>>


同步练习册答案