题目列表(包括答案和解析)
已知函数f(x)=alnx-2ax+3(a≠0).
(1)求函数f(x)的单调区间;
(2)函数y=f(x)的图像在x=2处的切线的斜率为
,若函数g(x)=
x3+x2[
+m],在区间(1,3)上不是单调函数,求m的取值范围.
下列说法:
①函数
的单调增区间是(-∞,1);
②若函数y=f(x)定义域为R且满足f(1-x)=f(x+1),则它的图象关于y轴对称;
③函数
的值域为(-1,1);
④函数y=|3-x2|的图象和直线y=a(a∈R)的公共点个数是m,则m的值可能是0,2,3,4;
⑤若函数f(x)=x2-2ax+5(a>1)在x∈[1,3]上有零点,则实数a的取值范围是
.
其中正确的序号是________.
下列四种说法:
①命题“
x∈R,使得x2+1>3x”的否定是“
x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③在区间[-2,2]上任意取两个实数a,b,则关系x的二次方程x2+2ax-b2+1=0的两根都为实数的概率为
;
④过点(
,1)且与函数y=
图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com