题目列表(包括答案和解析)
(本小题满分14分)已知定义在
上的函数
同时满足:①对任意
,都有
②当
时,
,试解决下列问题: (Ⅰ)求在
时,
的表达式;(Ⅱ)若关于
的方程
在
上有实数解,求实数
的取值范围;(Ⅲ)若对任意
,关于
的不等式
都成立,求实数
的取值范围.
(本小题满分14分)设函数
(
),
.
(Ⅰ)令
,讨论
的单调性;
(Ⅱ)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分14分)设函数
(
),
.
(Ⅰ)令
,讨论
的单调性;
(Ⅱ)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(Ⅲ)对于函数
与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图1,
,
是某地一个湖泊的两条互相垂直的湖堤,线段
和曲线段
分别是湖泊中的一座栈桥和一条防波堤。为观光旅游的需要,拟过栈桥
上某点
分别修建与
,
平行的栈桥
、
,且以
、
为边建一个跨越水面的三角形观光平台
。建立如图2所示的直角坐标系,测得线段
的方程是
,曲线段
的方程是
,设点
的坐标为
,记
。(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)
(1)求
的取值范围;
(2)试写出三角形观光平台
面积
关于
的函数解析式,并求出该面积的最小值
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com