题目列表(包括答案和解析)
C
[解析] 由题意知a·b=4(x-1)+2y=0,∴2x+y=2,∴9x+3y=32x+3y≥2
=6,等号成立时,x=
,y=2,故选C.
解析:由题意可画出图形:?
![]()
由图形可看出p是t的充分条件,r是t的充要条件.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.
【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。
先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。
证明:假设三个方程中都没有两个相异实根,
则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由题意a、b、c互不相等,∴①式不能成立.
∴假设不成立,即三个方程中至少有一个方程有两个相异实根.
设函数f(x)=lnx,g(x)=ax+
,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
第二问,由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+![]()
则其导数为![]()
由题意得,![]()
(11)由(I)可知
,令
。
∵
, …………8分
∴
是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当
时,
,有
;当
时,
,有
;当x=1时,
,有![]()
A
解析:由题意:等比数列{
}有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数,两个负数且|q|>1,故-24, 36, -54,81符合题意,则q=
,6q=-9.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com