定义:离心率的椭圆为“黄金椭圆 .已知椭圆:的一个焦点为.为椭圆上的任意一点. (1)试证:若不是等比数列.则一定不是“黄金椭圆 , (2)设E为黄金椭圆.问:是否存在过点F.P的直线L.使L与y轴的交点R满足 ?若存在.求直线L的斜率k,若不存在.说明理由. (3)已知椭圆E的短轴长是2.点S .求使取最大值时点P的坐标. 查看更多

 

题目列表(包括答案和解析)

定义:离心率的椭圆为“黄金椭圆”,已知E:(a>b>0)的一个焦点为F(c,0)(c>0),则E为“黄金椭圆”是a,b,c成等比数列的( )
A.既不充分也不必要条件
B.充分且必要条件
C.充分不必要条件
D.必要不充分条件

查看答案和解析>>

定义:离心率的椭圆为“黄金椭圆”,已知椭圆E:的一个焦点为F(c,0),p为椭圆E上任意一点.
(1)试证:若a、b、c不是等比数列,则E一定不是“黄金椭圆”;
(2)若E为黄金椭圆;问:是否存在过点F,P的直线l;使l与y轴的交点R满足;若存在,求直线l的斜率K;若不存在,说明理由.

查看答案和解析>>

定义:离心率的椭圆为“黄金椭圆”,已知E:(a>b>0)的一个焦点为F(c,0)(c>0),则E为“黄金椭圆”是a,b,c成等比数列的( )
A.既不充分也不必要条件
B.充分且必要条件
C.充分不必要条件
D.必要不充分条件

查看答案和解析>>

定义:离心率的椭圆为“黄金椭圆”,已知椭圆的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求的值.

查看答案和解析>>

定义:离心率数学公式的椭圆为“黄金椭圆”,已知椭圆数学公式的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足数学公式?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使数学公式取最大值时点P的坐标.

查看答案和解析>>


同步练习册答案