已知动圆与圆F1:x2+y2+6x+4=0和圆F2:x2+y2-6x-36=0都外切. (I)求动圆圆心的轨迹C的方程, (II)若直线l被轨迹C所截得的线段的中点坐标为.求直线l的方程, (Ⅲ)若点P在直线l上.且过点P的椭圆C∕以轨迹C的焦点为焦点.试求点P在什么位置时.椭圆C∕的长轴最短.并求出这个具有最短长轴的椭圆C∕的方程. 查看更多

 

题目列表(包括答案和解析)

已知动直线与圆

 (1) 求证:无论为何值,直线与圆总相交.

(2) 为何值时,直线被圆所截得的弦长最小?并求出该最小值.

 

查看答案和解析>>

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

(2009山东卷文) (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;      

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

 

查看答案和解析>>

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;    

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>


同步练习册答案