22.(1)证明:是以为. 得 查看更多

 

题目列表(包括答案和解析)

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:
(i)求四棱锥P-BDEF的体积;
(ii)若点Q满足 (λ>0),试探究:直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

为了解某班学生喜欢打篮球是否与性别有关,对该班50人进行了问卷调查得到了如下的列联表:

 

喜欢打篮球

不喜欢打篮球

合 计

男 生

 

5

 

女 生

10

 

 

合 计

 

 

50

已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为0.6。

(Ⅰ)请将上面的列联表补充完整;

(Ⅱ)是否有99%的把握认为喜欢打篮球与性别有关?说明你的理由;

(Ⅲ)已知不喜欢打篮球的5位男生中,喜欢踢足球,喜欢打羽毛球,喜欢打乒乓球,现在从这5位男生中选取3位进行其他方面的调查,求不全被选中的概率。

附:1.

2.在统计中,用以下结果对变量的独立性进行判断:

(1)当时,没有充分的证据判定变量有关联,可以认为变量是没有关联的;

(2)当时,有90%的把握判定变量有关联;

(3)当时,有95%的把握判定变量有关联;

(4)当时,有99%的把握判定变量有关联。

 

 

 

 

 

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知定义在(—1,1)上的函数满足,且对时,有

(1)

判断在(—1,1)上的奇偶性,并加以证明;

(2)

,求数列{}的通项公式;

(3)

为数列{}的前项和,问是否存在正整数,使得对任意的,有成立?若存在,求出的最小值,若不存在,则说明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>


同步练习册答案