某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x2 – 10x3, 成本函数为C (x) = 460x + 5000 . 又在经济学中.函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本) (1) 利润函数P(x) 及边际利润函数MP(x); (2) 年造船量安排多少艘时, 可使公司造船的年利润最大? (3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么? 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)
某造船公司年最高造船量是20艘. 已知造船x艘的产值函数为R(x)="3700x" + 45x2 – 10x3(单位:万元), 成本函数为C (x) =" 460x" + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) =" f" (x+1) – f (x). 求:
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?

查看答案和解析>>


同步练习册答案