设曲线C的方程为.若.且.则是曲线C的渐近线.根据以上定义可得曲线的一条渐近线方程为 . 查看更多

 

题目列表(包括答案和解析)

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方程为
 

查看答案和解析>>

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的渐近线方程为______.

查看答案和解析>>

已知双曲线的中心在坐标原点,对称轴为坐标轴,离心率e=,一条准线的方程为x-1=0.

(1)求双曲线C的方程;

(2)设直线l过点A(0,1)且斜率为k(k>0),问:在双曲线C的右支上是否存在唯一点B,它到直线l的距离等于1.若存在,则求出符合条件的所有k的值及相应点B的坐标;若不存在,请说明理由.

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

.分别是双曲线的左,右焦点,若在双曲线右支上存在点P,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(   )

A. B. C. D.

查看答案和解析>>


同步练习册答案