C2. C3. D4. A5. B6. D7. B8. D9. D10. B11. B12.A13.D14.A15.C16. C17. D18. B19. A20. B21. B22. B23. C 查看更多

 

题目列表(包括答案和解析)

代数式(a1+a2+a3+a4+a5)(b1+b2+b3+b4)(C1+C2+C3)的展开式的项数有(  )

查看答案和解析>>

已知等差数列{an}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{bn}的第2项,第3项,第4项.
(1)求数列{an}与{bn}的通项公式;
(2)求数列
1
anan+1
 }
的前n项和sn
(3)设数列{cn}对任意自然数n,均有
c1
b1
+
c2
b2
+
c3
b3
+…+
cn
bn
=an+1
,求c1+c2+c3+…+c2006值.

查看答案和解析>>

已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}对任意正整数n,均有
c1
b1
+
c2
b2
+
c3
b3
+…+
cn
bn
=an+1,求数列{cn}的通项公式并计算c1+c2+c3+…+c2012的值.

查看答案和解析>>

等差数列{an}的各项均为正数,a1=1,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=6,b3S3=24,n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)令Cn=
n
bn
+
1
anan+2
,Tn=C1+C2+C3+…+Cn,求Tn
①求Tn
②记f(k)=
19
2
-2Tk-
k+2
2k-2
(k∈N*)
,若f(k)≥
21
110
恒成立,求k的最大值.

查看答案和解析>>

已知函数f(x)=
2x
x+1

(1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.
(2)若数列{an}满足a1=
2
3
,an+1=f(an),bn=
1
an
-1
,n∈N+,证明数列{bn}是等比数列,并求出数列{bn}、{an}的通项公式;
(3)在(2)的条件下,若cn=an•an+1•bn+1(n∈N+),证明:c1+c2+c3+…cn
1
3

查看答案和解析>>


同步练习册答案