9002. 3. 1023 4. 1 5. 6. ①③④7. ①②③④⑤8. 4 查看更多

 

题目列表(包括答案和解析)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:
资源\消耗量\产品 甲产品(每吨) 乙产品(每吨) 资源限额(每天)
煤(t) 9 4 360
电力(kw•h) 4 5 200
劳动力(个) 3 10 300
利润(万元) 6 12
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

(2013•资阳二模)下列不等式成立的是(  )

查看答案和解析>>

某课题组为了研究学生的数学成绩和物理成绩之间的关系,随即抽取该市高二年级20名学生某次考试成绩,统计得2×2列联表如下(单位:人):
数学 优秀 数学 不优秀 合计
物理优秀 5 2 7
物理不优秀 3 10 13
合计 8 12 20
(1)根据表格数据计算,在犯错误的概率不超过0.05的前提下,是否认为学生的数学成绩和物理成绩之间有关系?
(2)若数学、物理成绩都优秀的学生为A类生,随即抽取一个学生为A类生的概率为
1
4
.为了了解A类生的有关情况,现从全市高二年级学生中每次随机抽取1人,直到抽取到A类生为止,求抽取人数不超过3人次的概率.

查看答案和解析>>

不等式
(x-3)(10-x)x2(x-1)
≥0
的解集是
{x|x<0,或0<x<1,或3≤x≤10}
{x|x<0,或0<x<1,或3≤x≤10}

查看答案和解析>>

甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)
甲校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 2 3 10 15 15 x 3 1
乙校:
分组 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
频数 1 2 9 8 10 10 y 3
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;
(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
  甲校 乙校 总计
优秀      
非优秀      
总计      
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2≥k0 0.10 0.025 0.010
k0 2.706 5.024 6.635

查看答案和解析>>


同步练习册答案