题目列表(包括答案和解析)
(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交
于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.![]()
(I)设e=
,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.
(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
![]()
(I)设e=
,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.
(本小题满分12分)
已知函数
和
.其中
.
(1)若函数
与
的图像的一个公共点恰好在x轴上,求
的值;w
(2)若函数
与
图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的
的值;如果没有,请说明理由.
(3)若
和
是方程
的两根,且满足
,
证明:当
时,
.
(本小题满分12分)已知直线x-2y+2=0经过椭圆C:
=1(
>
>0)的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方
的动点,直线AS、BS与直线l:x=分别交于M、N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.
(本小题满分12分)
已知椭圆
的离心率为
,过右焦点F的直线
与C相交于A、B两点,当直线
的斜率为1时,坐标原点O到
的距离为
。
(1)求
的值;
(2)椭圆C上是否存在点P,使得当
绕F转到某一位置时,有
成立?若存在,求出所有的点P的坐标与
的方程;若不存在,说明理由
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com