19.解:⑴解法以D为原点.DA.DC.DD1所在直线分别为x.y.z轴建立空间直角坐标系0-xyz.则D.C. A1.D1.C1.B1. 设E(0.2.t).则∵ 且 (2)设A1C∩平面BDE=K. 设A1C∩平面BDE=K. -① 同理有-② 由①.②联立解得 即所求角的正弦值是 解法证明:连AC交BD于点O.由正四棱柱性质可知AA1⊥底面ABCD.AC⊥BD.∴A1C⊥BD 又∵A1B⊥侧面BC1且B1C⊥BE. ∴A1C⊥BE. ∵BD∩BE=B. ∴A1C⊥平面BDE (2)解:设A1C交平面BDE于点K.连BK. 则∠A1BK为A1B与平面BDE所成的角. ∵在侧面BC1中BE⊥B1C.∴△BCE∽△B1BC. 连结OE.则OE为平面ACC1A1与平面DBE的交线. 即为A1B与平面BDE所成的角的正弦值. 查看更多

 

题目列表(包括答案和解析)

在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.

(Ⅰ)求向量的坐标;

(Ⅱ)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程;

(Ⅲ)是否存在实数a,使抛物线y=ax2-1上总有关于直线OB对称的两个点?若不存在,说明理由;若存在,求a的取值范围.

查看答案和解析>>

⊙O1和⊙O2的极坐标方程分别为

⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;

⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.

【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用

(1)中,借助于公式,将极坐标方程化为普通方程即可。

(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(I),由.所以

为⊙O1的直角坐标方程.

同理为⊙O2的直角坐标方程.

(II)解法一:由解得

即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.

解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x

 

查看答案和解析>>

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=
.
10
02
.
,N=
.
1
2
0
01
.
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

以O为原点,
OF
所在直线为x轴,建立直角坐标系.设
OF
FG
=1
,点F的坐标为(t,0),t∈[3,+∞).点G的坐标为(x0,y0).
(1)求x0关于t的函数x0=f(t)的表达式,并判断函数f(x)的单调性.
(2)设△OFG的面积S=
31
6
t
,若O以为中心,F,为焦点的椭圆经过点G,求当|
OG
|
取最小值时椭圆的方程.
(3)在(2)的条件下,若点P的坐标为(0,
9
2
)
,C,D是椭圆上的两点,
PC
PD
(λ≠1)
,求实数λ的取值范围.

查看答案和解析>>


同步练习册答案