如图.某小区有一块边长为50米的正方形空地.其中是一个以为圆心.为半径的扇形.分别在上.在此拟建水池与人行道,为一矩形.分别在上.在弧上.在此拟建活动中心,其余部分为绿化区域.设=.绿化区域的面积为. (1)当时.求关于的函数解析式.并求当取最大值时相应的的值, (2)当米时.求的最大值. 查看更多

 

题目列表(包括答案和解析)

精英家教网某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=25
3
米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>


同步练习册答案