题目列表(包括答案和解析)
| an+1 |
| an |
| ||
|
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.
已知椭圆
,常数
、
,且
.
(1)
当
时,过椭圆左焦点
的直线交椭圆于点
,与
轴交于点
,若
,求直线
的斜率;
(2)过原点且斜率分别为
和
(
)的两条直
线与椭圆
的交点为
(按逆时针顺序排列,且点
位于第一象限内),试用
表示四边形
的面积
;
(3)求
的最大值.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在
上,且满足
(其中常数
满足
)的函数叫做似周期函数.
(1)若某个似周期函数
满足
且图像关于直线
对称.求证:函数
是偶函数;
(2)当
时,某个似周期函数在
时的解析式为
,求函数
,
的解析式;
(3)对于确定的
时,
,试研究似周期函数函数
在区间
上是否可能是单调函数?若可能,求出
的取值范围;若不可能,请说明理由.
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知
是公差为d的等差数列,
是公比为q的等比数列。
(1)若
,是否存在
,有
?请说明理由;
(2)若
(a、q为常数,且aq
0)对任意m存在k,有
,试求a、q满足的充要条件;
(3)若
试确定所有的p,使数列
中存在某个连续p项的和式数列中
的一项,请证明。
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分
已知曲线
的方程为
,
、
为曲线上的两点,
为坐标原点,且有
.
(1)若
所在直线的方程为
,求
的值;
(2)若点
为曲线
上任意一点,求证:
为定值;
(3)在(2)的基础上,用类比或推广的方法对新的圆锥曲线
写出一个命题,并对该命题加以证明.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com