学会用定义解题.理解数形结合.分类讨论及等价变换等思想方法. 查看更多

 

题目列表(包括答案和解析)

(理)已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1)
(1)用定义证明f-1(x)在定义域上的单调性;
(2)若f-1(x)≤g(x),求x的取值集合D;
(3)设函数H(x)=g(x)-
12
f-1(x),当x∈D时,求函数H(x)的值域.

查看答案和解析>>

一块边长为10cm的正方形铁片按如图1所示的虚线裁下剪开,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.

(1)试建立容器的容积V与x的函数关系式,并求出函数的定义域.
(2)记四棱锥(如图2)的侧面积为S′,定义
V
S′
为四棱锥形容器的容率比,容率比越大,用料越合理.
如果对任意的a,b∈R+,恒有如下结论:ab≤
a2+b2
2
,当且仅当a=b时取等号.试用上述结论求容率比的最大值,并求容率比最大时,该四棱锥的表面积.

查看答案和解析>>

(理)已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1)
(1)用定义证明f-1(x)在定义域上的单调性;
(2)若f-1(x)≤g(x),求x的取值集合D;
(3)设函数H(x)=g(x)-
1
2
f-1(x),当x∈D时,求函数H(x)的值域.

查看答案和解析>>

(理)已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1)
(1)用定义证明f-1(x)在定义域上的单调性;
(2)若f-1(x)≤g(x),求x的取值集合D;
(3)设函数H(x)=g(x)-f-1(x),当x∈D时,求函数H(x)的值域.

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10,
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在R上是增函数;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围.

查看答案和解析>>


同步练习册答案