数形结合的思想.就是把问题的数量关系和空间形式结合起来加以考察的思想. 恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系. “数 和“形 是数学中两个最基本的概念.它们既是对立的.又是统一的.每一个几何图形中都蕴含着与它们的形状.大小.位置密切相关的数量关系,反之.数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来.使抽象思维和形象思维结合起来.在解决代数问题时.想到它的图形.从而启发思维.找到解题之路,或者在研究图形时.利用代数的性质.解决几何的问题.实现抽象概念与具体形象的联系和转化.化难为易.化抽象为直观. 数形结合包括:函数与图象.方程与曲线.复数与几何的结合,几何语言叙述与几何图形的结合等. 查看更多

 

题目列表(包括答案和解析)

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

对对数函数的图象和性质的研究,教材是根据互为反函数的图象特征,由指数函数的图象再作出其关于直线y=x的图象,即得对数函数的图象,在数形结合的数学思想指导下,推得对数函数的性质.请归纳对数函数y=logax(a>0且a≠1)的性质.

查看答案和解析>>

(2007•普陀区一模)现有问题:“对任意x>0,不等式x-a+
1
x+a
>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数f(x)=
1
x+a
和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数f(x)=x+a+
1
x+a
的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是(  )

查看答案和解析>>

现有问题:“对任意x>0,不等式x-a+>0恒成立,求实数a的取值范围.”有两位同学用数形结合的方法分别提出了自己的解题思路和答案:
学生甲:在一个坐标系内作出函数和g(x)=-x+a的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在g(x)的上方.可解得a的取值范围是[0,+∞]
学生乙:在坐标平面内作出函数的大致图象,随着a的变化,要求f(x)的图象再y轴右侧的部分恒在直线y=2a的上方.可解得a的取值范围是[0,1].
则以下对上述两位同学的解题方法和结论的判断都正确的是( )
A.甲同学方法正确,结论错误
B.乙同学方法正确,结论错误
C.甲同学方法正确,结论正确
D.乙同学方法错误,结论正确

查看答案和解析>>

给出下列结论:

①数乘向量的几何意义就是把向量a沿a的方向放大或缩小;

②|λa|=λ|a|(λ≠0);

③对向量λa,有λ>0时,沿a的方向放大了λ倍,当λ<0时,沿a的反方向缩小了|λ|倍.

④|λa|=|λ||a|,且λ>0时,λa的方向与a的相同,当λ<0时,λa的方向与a的方向相反,当λ=0时,λa的方向任意.

其中正确的个数为

[  ]

A.4
B.3
C.2
D.1

查看答案和解析>>


同步练习册答案