函数在(1.2)内是减函数.且在内是增函数.则a= . 例题讲解 例1:已知f(x)=ax3+cx+d是R上奇函数.当x=1时.f(x)取得极值-2. 的单调区间和极大值 (2)证明对任意x1.x2∈.不等式|f(x1)-f(x2)|<4恒成立 例2:已知. 的夹角为600.求k的取值范围. 例3:一自来水厂的蓄水池中原有水650吨.一天24小时在向水池中注水的同时.蓄水池又向居民供水.若x小时内向居民的总供水量为240吨.问当每小时向水池注水120吨.一天中何时蓄水池中水量最少. 课后作业 班级 学号 姓名 查看更多

 

题目列表(包括答案和解析)

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

函数f(x)=x3-px2+2m2-m+1在区间(-2,0)内单调递减,且在区间(-∞,-2)及(0,+∞)内单调递增,则实数p的取值集合是
{-3}
{-3}

查看答案和解析>>

函数y=f(x)在区间(0,+∞)内可导,导函数f′(x)是减函数,且f′(x)>0,设x0∈(0,+∞),y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,并设函数g(x)=kx+m.

(1)用x0f(x0)、f′(x0)表示m;

(2)证明当x0∈(0,+∞)时,g(x)≥f(x);

(3)若关于x的不等式x2+1≥ax+b上恒成立,其中a、b为实数,求b的取值范围及a与b 所满足的关系.

查看答案和解析>>

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件。

(1)定义域中的数,,则

(2),(是一个正的常数)

(3)当时,

证明:(1)是奇函数;

(2)是周期函数,并求出其周期;

(3)内为减函数。

 

 

查看答案和解析>>

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,且满足以下3个条件。

(1)定义域中的数,,则

(2),(是一个正的常数)

(3)当时,

证明:(1)是奇函数;

(2)是周期函数,并求出其周期;

(3)内为减函数。

 

 

查看答案和解析>>


同步练习册答案