9.已知二次函数f(x)=ax2+bx+1(a,bR,a>0).设方程f(x)=x的两个实数根分别为x1.x2, (1)如果x1<2<x2<4.设函数f(x)的对称轴为x=x0.求证:x0>-1, (2)如果|x1|<2.|x1-x2|=2.求证:b<或b>. 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c,满足f(0)=f(1)=0,且f(x)的最小值是-
1
4

(1)求f(x)的解析式;
(2)设直线l:y=t2-t(其中0<t<
1
2
,t为常数),若直线l与f(x)的图象以及y轴所围成封闭图形的面积是S1(t),直线l与f(x)的图象所围成封闭图形的面积是S2(t),设g(t)=S1(t)+
1
2
S2(t),当g(t)取最小值时,求t的值.

查看答案和解析>>

已知二次函数f(x)=ax2+bx满足条件:①f(0)=f(1);  ②f(x)的最小值为-
1
8

(1)求函数f(x)的解析式;
(2)设数列{an}的前n项积为Tn,且Tn=(
4
5
f(n),求数列{an}的通项公式;
(3)在(2)的条件下,若5f(an)是bn与an的等差中项,试问数列{bn}中第几项的值最小?求出这个最小值.

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(x∈R)的部分对应值如表.
x -3 -2 -1 0 1 2 3 4 5
y -24 -10 0 6 8 6 0 -10 -24
则使ax2+bx+c>0成立的x的取值范围是(  )

查看答案和解析>>

已知二次函数f(x)=ax2+bx+1的导函数 为f′(x),f′(0)>0,f(x)与x轴恰有一个交点,则
f(1)
f′(0)
的最小值为(  )

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤
1
2
(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由.
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=
1
2
[f(x1)+f(x2)]成立.

查看答案和解析>>


同步练习册答案