求最大的实数.使得当实系数多项式的所有根都是非负实数时.只要≥min{三根}.就有≥.并且问上式中等号何时成立? 数学竞赛单元训练题 解析几何 查看更多

 

题目列表(包括答案和解析)

解答题:解答应写出文字说明,证明过程或演算步骤.

设二次函数f(x)=ax2bxc,(abcR)满足下列条件:

①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;

②当x∈(0,5)时,xf(x)≤2|x-1|+1恒成立.

(1)

f(1)的值

(2)

f(x)的解析式

(3)

求最大的实数t,使得当x∈[1,3]时,f(xt)≤x恒成立.

查看答案和解析>>

当p1,p2,…,pn均为正数时,称
n
p1+p2+…+pn
为p1,p2,…,pn的“均倒数”.已知数列{an}的各项均为正数,且其前n项的“均倒数”为
1
2n+1

(1)求数列{an}的通项公式;
(2)设cn=
an
2n+1
(n∈N*),试比较cn+1与cn的大小;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,使当x≤λ时,对于一切正整数n,都有f(x)≤0恒成立?

查看答案和解析>>

当p1,p2,…,pn均为正数时,称
n
p1+p2+…+pn
为p1,p2,…,pn的“均倒数”.已知数列{an}的各项均为正数,且其前n项的“均倒数”为
1
2n+1

(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设cn=
an
2n+1
,试判断并说明cn+1-cn(n∈N*)的符号;
(Ⅲ)已知bn=tan(t>0),记数列{bn}的前n项和为Sn,试求
Sn+1
Sn
的值;
(Ⅳ)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,使当x≤λ时,对于一切正整数n,都有f(x)≤0恒成立?

查看答案和解析>>

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最大的实数t,使cn
1
t
(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3(如在a1与a2之间插入30个3,a2与a3之间插入31个3,a3与a4之间插入32个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否为数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

(本小题满分14分)
均为正数时,称的“均倒数”.已知数列的各项均为正数,且其前项的“均倒数”为
(1)求数列的通项公式;
(2)设,试比较的大小;
(3)设函数,是否存在最大的实数,使当时,对于一切正整数,都有恒成立?

查看答案和解析>>


同步练习册答案