定值问题.常通过“算 的办法加以证明.以算代证. 查看更多

 

题目列表(包括答案和解析)

用向量方法可以证明:若P为正三角形内切圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.请你针对这个问题进行研究,写出一个推广后的正确命题:
①②③④
①②③④

①若P为正三角形外接圆上任意一点,则点P到三角形三个顶点距离的平方和为定值.
②若正三角形A1A2A3外接圆的圆心为O,半径为R,P为平面上任意一点,则|PA1|2+|PA2|2+|PA3|2=3|PO|2+3R2
③若P为正多边形内切圆上任意一点,则点P到各个顶点距离的平方和为定值.
④若P为正多边形外接圆上任意一点,则点P到各个顶点距离的平方和为定值.

查看答案和解析>>

圆柱形金属饮料罐的表面积为定值S,要使饮料罐的容积最大,则它的底面半径R为
s
s

查看答案和解析>>

(2007•上海模拟)(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
79
,周长为定值p,求面积S的最大值;
(3)为了研究边长a,b,c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,则S≤36,但是,其中等号成立的条件是c2=a2+b2,a=9,b=8,于是c2=145与3≤c≤4矛盾,所以,此三角形的面积不存在最大值.
以上解答是否正确?若不正确,请你给出正确的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)称为三角形面积的海伦公式,它已经被证明是正确的)

查看答案和解析>>

如图,在棱长为a的正方体ABCD-A1B1C1D1中,P是A1D1的中点,Q是A1B1上的任意一点,E、F是CD上的任意两点,且EF的长为定值.现有如下结论:
①异面直线PQ与EF所成的角是定值;
②点P到平面QEF的距离是定值;
③直线PQ与平面PEF所成的角是定值;
④三棱锥P-QEF的体积是定值;
⑤二面角P-EF-Q的大小是定值.
其中正确结论的个数是(  )

查看答案和解析>>

已知A(1,
2
)是离心率为
2
2
的椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.
(1)求椭圆E的方程;
(2)试证明直线BC的斜率为定值,并求出这个定值;
(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.

查看答案和解析>>


同步练习册答案