能正确运用三角公式进行三角函数式的化简.求值和证明. [教学目标] 查看更多

 

题目列表(包括答案和解析)

在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
5
6
4
5
3
4
1
3
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.

查看答案和解析>>

在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
5
6
4
5
3
4
1
3
,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.

查看答案和解析>>

(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问
题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、
四轮问题的概率分别为,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率; 
(Ⅱ)求该选手至多进入第三轮考核的概率;

查看答案和解析>>

(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问

题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、

四轮问题的概率分别为,且各轮问题能否正确回答互不影响。

(Ⅰ)求该选手进入第三轮才被淘汰的概率; 

(Ⅱ)求该选手至多进入第三轮考核的概率;

 

 

查看答案和解析>>

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。

先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。

证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由题意a、b、c互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根.

 

查看答案和解析>>


同步练习册答案