题目列表(包括答案和解析)
解关于
的不等式:
![]()
【解析】解:当
时,原不等式可变为
,即
(2分)
当
时,原不等式可变为
(5分) 若
时,
的解为
(7分)
若
时,
的解为
(9分) 若
时,
无解(10分) 若
时,
的解为
(12分综上所述
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为![]()
当
时,原不等式的解为: ![]()
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
解关于
的不等式![]()
![]()
【解析】本试题主要考查了含有参数的二次不等式的求解,
首先对于二次项系数a的情况分为三种情况来讨论,
A=0,a>0,a<0,然后结合二次函数的根的情况和图像与x轴的位置关系,得到不等式的解集。
解:①若a=0,则原不等式变为-2x+2<0即x>1
此时原不等式解集为
; ![]()
②若a>0,则ⅰ)
时,原不等式的解集为
;
ⅱ)
时,原不等式的解集为
;
ⅲ)
时,原不等式的解集为
。 ![]()
③若a<0,则原不等式变为![]()
原不等式的解集为
。
(1)解关于
的不等式
;
(2)若关于
的不等式
有解,求实数
的取值范围.
【解析】(1)
(2’)或
(4’) 原不等式解集为
(5’)
(2)
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com