用等可能性事件的概率公式P(A)=解题时.一定先弄清该事件的“一次试验 是什么.再看确定的基本事件相互间是否等可能性. 查看更多

 

题目列表(包括答案和解析)

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

查看答案和解析>>

对立事件及概率公式

(1)对立事件

________的两个事件叫做互为对立事件,事件A的对立事件记作________.

(2)对立事件的概率公式

若事件A与事件是对立事件,则________.

查看答案和解析>>

乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(I)     求开球第4次发球时,甲、乙的比分为1比2的概率;

(II)   求开始第5次发球时,甲得分领先的概率。

【解析】本试题主要是考查了关于独立事件的概率的求解,以及分布列和期望值问题。首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论。

【点评】首先从试题的选材上来源于生活,同学们比较熟悉的背景,同时建立在该基础上求解进行分类讨论的思想的运用,以及能结合独立事件的概率公式求解分布列的问题。情景比较亲切,容易入手,但是在讨论情况的时候,容易丢情况。

 

查看答案和解析>>

有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,…,第100站,一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从k到k+1),若掷出反面,棋向前跳两站(从k到k+2),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n站概率为Pn
(1)求P0,P1,P2的值;
(2)求证:Pn-Pn-1=-
12
(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

下列说法正确的是(  )

查看答案和解析>>


同步练习册答案