已知抛物线关于直线对称的抛物线方程是 . 查看更多

 

题目列表(包括答案和解析)

已知抛物线C:y2=x,过定点A(x0,0)(x0
18
)
,作直线l交抛物线于P,Q(点P在第一象限).
(Ⅰ)当点A是抛物线C的焦点,且弦长|PQ|=2时,求直线l的方程;
(Ⅱ)设点Q关于x轴的对称点为M,直线PM交x轴于点B,且BP⊥BQ.求证:点B的坐标是(-x0,0)并求点B到直线l的距离d的取值范围.

查看答案和解析>>

已知抛物线C:x2=2py(p>0)的焦点F与P(2,-1)关于直线l:x-y-2=0对称,中心在坐标原点的椭圆经过两点M(1,
7
2
),N(-
2
6
2
),且抛物线与椭圆交于两点A(xA,yA)和B(xB,yB),且xA<xB
(1)求出抛物线方程与椭圆的标准方程;
(2)若直线l′与抛物线相切于点A,试求直线l′与坐标轴所围成的三角形的面积;
(3)若(2)中直线l′与圆x2-2mx+y2+2y+m2-
24
25
=0恒有公共点,试求m的取值范围.

查看答案和解析>>

已知抛物线C1:y=2x2与抛物线C2关于直线y=-x对称,则C2的准线方程为(  )
A、x=
1
8
B、x=-
1
8
C、x=
1
2
D、x=-
1
2

查看答案和解析>>

已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点.
(Ⅰ)证明:直线NA,NB的斜率互为相反数;
(Ⅱ)求△ANB面积的最小值;
(Ⅲ)当点M的坐标为(m,0)(m>0,且m≠1).根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):
①直线NA,NB的斜率是否互为相反数?
②△ANB面积的最小值是多少?

查看答案和解析>>

精英家教网已知抛物线C:x2=2py(p为正常数)的焦点为F,过F做一直线l交C于P,Q两点,点O为坐标原点.
(1)若△POQ的面积记为S,求
S2|PQ|
的值;
(2)若直线l垂直于y轴,过点Q做关于直线l的对称的两条直线l1,l2分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.

查看答案和解析>>


同步练习册答案