数列{an}中.a1=8,a4=2.且满足an+2-2an+1+an=0, (1)求:数列{an}的通项公式 (2)Sn=|a1|+|a2|+-+|an|.求:Sn (3)bn= 查看更多

 

题目列表(包括答案和解析)

数列{an}中a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*),
(1)求数列{an}通项公式;
(2)设S50=|a1|+|a2|+L+|a50|,求S50

查看答案和解析>>

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn(n∈N*)
,是否存在最大的整数m,使得对任意n∈N*,均有Tn
m
32
成立?若存在,求出m的值:若不存在,请说明理由.

查看答案和解析>>

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an( n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

数列{an}中,a1=8,a4=2且满足an+2=2an+1an,(n∈N*).

(1)求数列{an}的通项公式;

(2)设Sn=|a1|+|a2|+…+|an|,求Sn;

(3)设bn=(n∈N*),Tn=b1+b2+……+bn(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

数列{an}中a1=8,a4=2,且满足an+2-2an+1+an=0(n∈N*),
(1)求数列{an}通项公式;
(2)设S50=|a1|+|a2|+L+|a50|,求S50

查看答案和解析>>


同步练习册答案