3. 则y=f(x)在(1,2)内是 A.单调增函数,且f(x)<0 B.单调减函数,且f(x)>0 C.单调增函数,且f(x)>0 D.单调减函数,且f(x)<0 查看更多

 

题目列表(包括答案和解析)

已知y=f(x)为奇函数,且在[1,3]内单调递增,f(3)=4,f(1)=2
 
,则f(x)在[-3,-1]内的最大值是(  )

查看答案和解析>>

函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设函数F(x)=f2(x)+f2(-x),则对于F(x)有如下四个说法:

①定义域是[-b,b];②是偶函数;

③最小值是0;④在定义域内单调递增.

其中正确的说法的个数有

A.4个                B.3个                C.2个                D.1个

查看答案和解析>>

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x2-(a+2)x+alnx.其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,给出两类直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出相应的m或n的值,若不存在,说明理由.
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.

查看答案和解析>>

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:g′(
x1+x2
2
)
>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>


同步练习册答案