已知袋中装有大小相同的2个白球和4个红球. (Ⅰ)从袋中随机地将球逐个取出.每次取后不放回.直到取出两个红球为止.求取球次数的数学期望, (Ⅱ)从袋中随机地取出一个球.放回后再随机地取出一个球.这样连续取4次球.求共取得红球次数的方差. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.

(1)求红色球的个数;

(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.

 

查看答案和解析>>

(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.

查看答案和解析>>

(本小题满分12分)一个袋子中有红、白、蓝三种颜色的球共24个,除颜色外完全相同,已知蓝色球3个. 若从袋子中随机取出1个球,取到红色球的概率是.
(1)求红色球的个数;
(2)若将这三种颜色的球分别进行编号,并将1号红色球,1号白色球,2号蓝色球和3号蓝色球这四个球装入另一个袋子中,甲乙两人先后从这个袋子中各取一个球(甲先取,取出的球不放回),求甲取出的球的编号比乙的大的概率.

查看答案和解析>>

(本题满分10分)在一个口袋中装有12个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到红球的概率是,从袋中任意摸出2个球,至少得到一个黑球的概率是

求:(1)袋中黑球的个数;

(2)从袋中任意摸出3个球,至少得到2个黑球的概率。(结果用分数表示)

 

查看答案和解析>>

(本小题满分12分)已知袋中装有标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,

求(1)取出的3个小球上的数字各不相同的概率;

(2)随机变量的概率分布和数学期望。

 

查看答案和解析>>


同步练习册答案