设椭圆的长轴两端点为M.N.异于M.N的点P在椭圆上.则PM与PN的斜率之积为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

设椭圆=1的长轴两端点为M、N,异于M、N的点P在椭圆上,则PM与PN的斜率之积为(    )

A.                B.               C.               D.

查看答案和解析>>

设椭圆=1的长轴两端点为M、N,异于M、N的点P在椭圆上,则PM与PN的斜率之积为

[  ]
A.

B.

C.

D.

查看答案和解析>>

(2009•河东区二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)

(1)设F是椭圆的一个焦点,M椭圆上的任意一点,|MF|的最大值与最小值的算术平均等于4,椭圆的顶点A与N(-2,0)关于直线x+y=0对称,求此椭圆方程;
(2)设点P是椭圆
x2
a2
+
y2
b2
=1
上异于长轴端点的任意一点,F1、F2为两焦点,记∠F1PF2=θ,求证|PF1|•|PF2|=
2b2
1+cosθ

查看答案和解析>>

有一幅椭圆型彗星轨道图,长4 cm,高,如下图,已知O为椭圆中心,A1,A2是长轴两端点,太阳位于椭圆的左焦点F处.

(Ⅰ)建立适当的坐标系,写出椭圆方程,并求出当彗星运行到太阳正上方时二者在图上的距离;

(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,设P是l上异于D点的任意一点,直线A1P,A2P分别交椭圆于M、N(不同于A1,A2)两点,问点A2能否在以MN为直径的圆上?试说明理由.

查看答案和解析>>

(本小题满分12分)

有一幅椭圆型彗星轨道图,长4cm,高,如下图,

已知O为椭圆中心,A1,A2是长轴两端点,

 
太阳位于椭圆的左焦点F处.

   (Ⅰ)建立适当的坐标系,写出椭圆方程,

并求出当彗星运行到太阳正上方时二者在图上的距离;

   (Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,

设P是l上异于D点的任意一点,直线A1P,A2P分别

交椭圆于M、N(不同于A1,A2)两点,问点A2能否

在以MN为直径的圆上?试说明理由.

查看答案和解析>>


同步练习册答案