新定义题 类似地考查学习能力的题还很多.如新定义题: 典型题9 任取x1. x2∈[a.b].且x1≠x2.若.称f (x)是[a.b]上的凸函数.则下列图象中.是凸函数图象的是( ). 典型题10 定义“等和数列 :在一个数列中.如果每一项与它的后一项的和都为同一个常数.那么这个数列叫做等和数列.这个常数叫做该数列的公和. 已知数列是等和数列.且.公和为5.那么的值为 .这个数列的前n项和的计算公式为 (答案3;当n为偶数时.,当n为奇数时.) 查看更多

 

题目列表(包括答案和解析)

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.

  (I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:

  (II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:

  (III)选取∈(O,1),,由(I)可确定含峰区间为,在所得的含峰区间内选取,由类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)

 

查看答案和解析>>

(05年北京卷理)(14分)

是定义在[0,1]上的函数,若存在,使得在[0,]上单调递增,在[,1]单调递减,则称为[0,1]上的单峰函数,为峰点,包含峰点的区间为含峰区间对任意的[0,1]上的单峰函数,下面研究缩短其含峰区间长度的方法

(Ⅰ)证明:对任意的 , ,若,则(0,)为含峰区间;若,则(,1)为含峰区间;

(Ⅱ)对给定的(0<<0.5),证明:存在,满足,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+;

(Ⅲ)选取, 由(Ⅰ)可确定含峰区间为(0,)或(,1),在所得的含峰区间内选取,由类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34

(区间长度等于区间的右端点与左端点之差)

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>

设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x]上单调递增,在[x,1]单调递减,则称f(x)为[0,1]上的单峰函数,x为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x1,1)为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取x1,x2∈(0,1),x1<x2由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定是一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差).

查看答案和解析>>


同步练习册答案