22.正项数列 (1)求, (2)试确定一个正整数N.使当n>N时.不等式 成立, (3)求证: 查看更多

 

题目列表(包括答案和解析)

设数列{an}的通项公式为an=2n,数列{bn}满足2n2-(t+bn)n+
32
bn=0
,(t∈R,n∈N*).
(1)试确定实数t的值,使得数列{bn}为等差数列;
(2)当数列{bn}为等差数列时,对每个正整数k,在ak和ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

设数列{an}的通项公式为an=2n,数列{bn}满足2n2-(t+bn)n+
3
2
bn=0
,(t∈R,n∈N*).
(1)试确定实数t的值,使得数列{bn}为等差数列;
(2)当数列{bn}为等差数列时,对每个正整数k,在ak和ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

设数列{an}的通项公式为,数列{bn}满足,(t∈R,n∈N*).
(1)试确定实数t的值,使得数列{bn}为等差数列;
(2)当数列{bn}为等差数列时,对每个正整数k,在ak和ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

已知数列{an}有a1?a,a2?p (常数p>0),对任意的正整数n,Sn?a1a2…an,并有Sn满足Sn=
n(an-a1)
2

(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且
lim
n→∞
bn=b
,则称b为数列{bn}的“上渐进值”,求数列
an-1
an+1
的“上渐进值”.

查看答案和解析>>

已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足

(1)求a的值;

(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;

(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且,则称b为数列{bn}的“上渐近值”,令,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>


同步练习册答案