11.定义运算.满足条件的复数= . 查看更多

 

题目列表(包括答案和解析)

对于集合A,如果定义了一种运算“⊕”,使得集合A中的元素间满足下列4个条件:
(Ⅰ)?a,b∈A,都有a⊕b∈A
(Ⅱ)?e∈A,使得对?a∈A,都有a⊕a=a⊕e=a;
(Ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;
(Ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),
则称集合A对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”:
①A={整数},运算“⊕”为普通加法;
②A={复数},运算“⊕”为普通减法;
③A={正实数},运算“⊕”为普通乘法.
其中可以构成“对称集”的有(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).

(1)计算:(2,3)⊙(-1,4);

(2)请用数学符号语言表述运算⊙满足交换律,并给出证明;

(3)若“A中的元素I=(x,y)”是“对,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合A由全体二元有序实数组组成,在A上定义一个运算,记为⊙,对于A中的任意两个元素α=(a,b),β=(c,d),规定:α⊙β=(ad+bc,bd-ac).
(1)计算:(2,3)⊙(-1,4).
(2)请用数学符号语言表述运算⊙满足交换律,并给出证明.
(3)若“A中的元素I=(x,y)”是“对?α∈A,都有α⊙I=I⊙α=α成立”的充要条件,试求出元素I.

查看答案和解析>>

下列结论:
①如果一条直线和一个平面的一条斜线垂直,那么它也和这条斜线在这个平面内的射影垂直;
②定义运算
.
ac
bd
.
=ad-bc,复数z满足
.
zi
1i
.
=1+i,则复数z的模为
5

③向量
a
,有|
a
|2=
a
2;类比复数z,有|z|2=z2
④满足条件|z+i|+|z-i|=2的复数z在复平面上对应点的轨迹是椭圆.
真命题的序号是

查看答案和解析>>


同步练习册答案