椭圆E的中心在原点O.焦点在x轴上.离心率e=,过点C的直线l交椭圆于A.B两点.且满足:=λ. (1)若λ为常数,试用直线l的斜率k(k≠0)表示△OAB的面积; (2)若λ为常数.当△OAB的面积取得最大值时.求椭圆E的方程; (3)若λ变化.且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时.椭圆E的短半轴长取得最大值?并求出此时的椭圆方程. 查看更多

 

题目列表(包括答案和解析)

椭圆E的中心在原点O,焦点在x轴上,离心率e=
2
3
,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:
CA
BC
(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。

(1)当直线的斜率k=1且时,求三角形OAB的面积.

(2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

 

查看答案和解析>>

椭圆E的中心在原点O,焦点在x轴上,离心率数学公式,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:数学公式(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>

椭圆E的中心在原点O,焦点在x轴上,其离心率e=,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且满足点C分向量的比为2.

(1)用直线l的斜率k(k≠0)表示△OAB的面积;

(2)当△OAB的面积最大时,求椭圆E的方程.

查看答案和解析>>

椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2).
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程.

查看答案和解析>>


同步练习册答案