题目列表(包括答案和解析)
(本小题满分12分)
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
(本小题满分12分)
设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3。
(Ⅰ)求f(x)的解析式:
(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;
(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值。
|
(1)写出y关于x的函数关系式;
(2)如何设计x的大小,使得水箱的容积最大?
(本小题满分12分)
设定义在区间
上的函数
的图象为
,
是
上的任意一点,
为坐标原点,设向量
=
,
,
,当实数λ满足x="λ" x1+(1-λ) x2时,记向量
=λ
+(1-λ)
.定义“函数
在区间
上可在标准
下线性近似”是指 “![]()
恒成立”,其中
是一个确定的正数.
(1)求证:
三点共线;
(2)设函数
在区间[0,1]上可在标准
下线性近似,求
的取值范围;
(3)求证:函数
在区间
上可在标准
下线性近似.
(参考数据:
=2.718,
)
(本小题满分12分)
设定义在区间
上的函数
的图象为
,
是
上的任意一点,
为坐标原点,设向量
=
,
,
,当实数λ满足x="λ" x1+(1-λ) x2时,记向量
=λ
+(1-λ)
.定义“函数
在区间
上可在标准
下线性近似”是指 “![]()
恒成立”,其中
是一个确定的正数.
(1)求证:
三点共线;
(2)设函数
在区间[0,1]上可在标准
下线性近似,求
的取值范围;
(3)求证:函数
在区间
上可在标准
下线性近似.
(参考数据:
=2.718,
)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com