3.已知平面∥平面.直线L平面,点P直线L,平面.间的距离为8.则在内到点P的距离为10.且到L的距离为9的点的轨迹是( ) A 一个圆 B 四个点 C 两条直线 D 两个点 正确答案:B 错因:学生对点线距离.线线距离.面面距离的关系不能灵活掌握. 查看更多

 

题目列表(包括答案和解析)

(2007•崇明县一模)已知如图,直线l:x=-
p
2
(p>0),点F(
p
2
,0)
,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E.
(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;
(Ⅱ)已知m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程;
(Ⅲ)已知m=.设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

已知如图,直线l:x=-
p
2
(p>0),点F(
p
2
,0)
,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)当p=2时,曲线C上存在不同的两点关于直线y=kx+3对称,求实数k满足的条件(写出关系式即可);
(3)设动点M (a,0),过M且斜率为1的直线与轨迹C交于不同的两点A,B,线段AB的中垂线与x轴交于点N,当|AB|≤2p时,求△NAB面积的最大值.

查看答案和解析>>

设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E.
(Ⅰ)求轨迹E的方程,并说明该方程所表示曲线的形状;
(Ⅱ)已知m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求该圆的方程;
(Ⅲ)已知m=.设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

设m∈R,在平面直角坐标系中,已知向量=(mx,y+1),向量=(x,y-1),,动点M(x,y)的轨迹为E,
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知m=,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB(O为坐标原点),并求出该圆的方程;
(3)已知m=,设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值。

查看答案和解析>>


同步练习册答案