题目列表(包括答案和解析)
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,
、
分别为Y,Z轴建立空间直角坐标系.由于,![]()
![]()
在三棱柱
中有
,
设![]()
![]()
![]()
又
侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有
故二面角
的平面角
的大小为向量
与
的夹角.
![]()
(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知
+2
=11,∴m+2n=11,x2的系数为
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+
33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60, 故展开式中x的奇次幂项的系数之和为30.
| A、b=20,A=45°,C=80° | B、a=30,c=28,B=60° | C、a=14,b=16,A=45° | D、a=12,c=15,A=120° |
| A.b=20,A=45°,C=80° | B.a=30,c=28,B=60° |
| C.a=14,b=16,A=45° | D.a=12,c=15,A=120° |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com